Axiomatic characterizations of the dimension of metric spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative Axiomatic Characterizations of the Grey Shapley Value

The Shapley value, one of the most common solution concepts of cooperative game theory is defined and axiomatically characterized in different game-theoretic models. Certainly, the Shapley value can be used in interesting sharing cost/reward problems in the Operations Research area such as connection, routing, scheduling, production and inventory situations. In this paper, we focus on the Shapl...

متن کامل

Characterizations of Sobolev Inequalities on Metric Spaces

We present isocapacitary characterizations of Sobolev inequalities in very general metric measure spaces.

متن کامل

Characterizations of Compactness for Metric Spaces

Definition. Let X be a metric space with metric d. (a) A collection {G α } α∈A of open sets is called an open cover of X if every x ∈ X belongs to at least one of the G α , α ∈ A. An open cover is finite if the index set A is finite. (b) X is compact if every open cover of X contains a finite subcover. Definition. Let X be a metric space with metric d and let A ⊂ X. We say that A is a compact s...

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1994

ISSN: 0166-8641

DOI: 10.1016/0166-8641(94)00003-4